Las ecuaciones que rigen la formación de cristales y la nucleación, (también descritas en "J. Nývlt [1968]. Kinetics of Nucleation in Solutions. Journal of Crystal Growth, 3-4, 377-383") muestran que el área de superficie de la mezcla cristalina desempeña un rol importante a la hora de determinar la cinética de la formación y la nucleación de los cristales. Al inicio del proceso de cristalización, el área de superficie de los cristales presentes en la mezcla es pequeña, lo que significa que la nucleación tiene preponderancia sobre la formación, independientemente de otros factores cinéticos. A medida que se produce la cristalización, el área de superficie aumenta y es posible la cinética de formación que sea más favorable. Cuando se aplica una velocidad de enfriamiento lineal (como se muestra a la derecha) a un proceso de cristalización, la supersaturación puede acumularse inicialmente si no hay área de superficie disponible para la formación. Esta acumulación da como resultado una cinética de cristalización rápida y, a menudo, impredecible, donde suele dominar la nucleación.
Una técnica inteligente para mejorar la formación es que el enfriamiento se produzca muy lentamente al principio, cuando el área de superficie es limitada (como se muestra a la derecha). Esto mantiene la supersaturación baja y permite que domine la formación. Tras un tiempo, cuando el área de superficie haya aumentado, la velocidad de enfriamiento se puede incrementar, lo que reduce el tiempo del lote, pero favorece la formación. Esta técnica consigue el equilibrio perfecto entre el control de la supersaturación y la nucleación excesiva, al mismo tiempo que evita que los lotes se prolonguen demasiado ("P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’Sullivan y D. O’Grady [2005]. A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes. Organic Process Research & Development, 9[3], 348-355"). Un inconveniente de este enfoque es que implementar perfiles de enfriamiento o de adición de antidisolvente no lineales en la planta puede ser difícil y añade complejidad al proceso. Sin embargo, se puede conseguir si se usa un pequeño número de rampas lineales, con las que se consigue un resultado similar.
La ventaja de implementar velocidades de enfriamiento no lineales para mantener constante la supersaturación durante el curso de un proceso ha quedado demostrada al implementar un ciclo de control que ajusta la temperatura del proceso con tal fin. Tal resultado se describe en "V. Liotta y V. Sabesan (2004) Monitoring and Feedback Control of Supersaturation Using ATR-FTIR to Produce an Active Pharmaceutical Ingredient of a Desired Crystal Size. Organic Process Research & Development, 8(3), 488-494. Copyright (2004) American Chemical Society", donde se usa un algoritmo de control para realizar un proceso de cristalización con una supersaturación constante (se muestra a la izquierda). En este ejemplo, la supersaturación se supervisa mediante el control por FTIR in situ, y el perfil de temperatura resultante no es lineal: primero despacio y rápido hacia el final.
Este artículo trata las técnicas habituales de análisis del tamaño de las partículas y cómo se usan para conseguir partículas de alta calidad. Algunos ejemplos son el uso de analizadores de tamaño de partículas fuera de línea en combinación con herramientas de caracterización de partículas durante el proceso para optimizarlo.
Las operaciones unitarias de cristalización ofrecen una oportunidad exclusiva para buscar y controlar una distribución óptima del tamaño y la forma de los cristales para:
El polimorfismo es un fenómeno común con muchos sólidos cristalinos en la industria farmacéutica y de las sustancias químicas puras. Los científicos cristalizan deliberadamente el polimorfo que desean para mejorar las propiedades de aislamiento, ayudar a superar los desafíos de los procesos posteriores, aumentar la biodisponibilidad o evitar conflictos de patentes. La identificación de las transformaciones polimórficas y morfológicas in situ y en tiempo real elimina las alteraciones inesperadas del proceso, los productos que no cumplen las especificaciones y el costoso reprocesamiento del material.
Los científicos recristalizan compuestos químicos de alto valor para obtener un producto cristalino con las propiedades físicas deseadas y con una eficiencia de procesos óptima. Se requieren siete pasos para diseñar el proceso de recristalización ideal, desde la elección del disolvente adecuado hasta la obtención de un producto de cristal seco. Esta guía de recristalización explica paso a paso el procedimiento para desarrollar un proceso de recristalización. Explica qué información se requiere en cada etapa de la recristalización y describe cómo controlar los parámetros críticos del proceso.
Las curvas de solubilidad se suelen usar para ilustrar la relación entre solubilidad, temperatura y tipo de disolvente. Mediante el trazado de la temperatura y la solubilidad, los científicos pueden elaborar el marco necesario para desarrollar el proceso de cristalización deseado. Una vez que se ha escogido un disolvente apropiado, la curva de solubilidad se convierte en una herramienta fundamental para el desarrollo de un proceso de cristalización eficaz.
Los científicos y los ingenieros obtienen control sobre los procesos de cristalización gracias al detenido ajuste del nivel de supersaturación durante el proceso. La supersaturación es la fuerza impulsora de la nucleación y del crecimiento en la cristalización y, en última instancia, la que dicta la distribución final del tamaño de los cristales.
Las tecnologías basadas en sensores en el proceso se aplican para realizar seguimientos de los cambios del tamaño y la forma de las partículas en una concentración completa sin necesidad de dilución o extracción. Los parámetros del proceso con los valores correctos para el rendimiento de la cristalización se pueden optimizar mediante el seguimiento de la velocidad y el grado de cambio de las partículas y los cristales en tiempo real.
Este es uno de los pasos fundamentales para optimizar el comportamiento de la cristalización. Cuando se diseña una estrategia de siembra, se deben tener encuentra algunos parámetros como el tamaño de las semillas, la carga de las semillas (masa) y la temperatura de adición de las semillas. Estos parámetros, por lo general, se optimizan en función de la cinética del proceso y las propiedades que se desea que tengan las partículas finales, y deben permanecer invariables durante el escalado y la transferencia entre tecnologías.
La separación de fases líquido-líquido, o el aceitado, es un mecanismo de partículas a menudo difícil de detectar que puede darse durante los procesos de cristalización. Más información.
En una cristalización con antidisolvente, la tasa de adición de disolvente, la ubicación de la adición y el mezclado afectan a la supersaturación local de un recipiente o tubería. Para modificar el tamaño y el recuento de los cristales, los científicos e ingenieros ajustan el protocolo de adición de antidisolvente y el nivel de supersaturación.
El perfil de enfriamiento afecta en gran medida a la supersaturación y la cinética de la cristalización. La temperatura del proceso se optimiza para adaptarse al área de superficie de los cristales a fin de conseguir una formación óptima en lugar de nucleación. Las técnicas avanzadas permiten controlar la temperatura para modificar la supersaturación y el tamaño y la forma de los cristales.
El cambio de la escala o de las condiciones del mezclado en un cristalizador puede afectar directamente a la cinética del proceso de cristalización y al tamaño final del cristal. Es importante tener en cuenta los efectos de la transferencia de calor y de masa para los sistemas de enfriamiento y antidisolvente respectivamente, ya que los gradientes de temperatura o concentración pueden derivar en una falta de homogeneidad en el nivel imperante de supersaturación.
La cristalización de proteínas es el acto y método de creación de estructuras reticulares ordenadas para macromoléculas a menudo complejas.
La cristalización de la lactosa es una práctica industrial para separar la lactosa de las soluciones de suero mediante cristalización controlada.
Un proceso de cristalización por lotes bien diseñado es aquel que puede escalarse con éxito a escala de producción, dando la distribución de tamaños de cristal, el rendimiento, la forma y la pureza deseados. La optimización de la cristalización por lotes requiere mantener un control adecuado de la temperatura del cristalizador (o de la composición del disolvente).
La cristalización continua es posible gracias a los avances en el modelado de procesos y el diseño de cristalizadores, que aprovechan la capacidad de controlar la distribución del tamaño de los cristales en tiempo real mediante la supervisión directa de la población de cristales.
The MSMPR (Mixed Suspension Mixed Product Removal) crystallizer is a type of crystallizer used in industrial processes to produce high-purity crystals.
El polimorfismo es un fenómeno común con muchos sólidos cristalinos en la industria farmacéutica y de las sustancias químicas puras. Los científicos cristalizan deliberadamente el polimorfo que desean para mejorar las propiedades de aislamiento, ayudar a superar los desafíos de los procesos posteriores, aumentar la biodisponibilidad o evitar conflictos de patentes. La identificación de las transformaciones polimórficas y morfológicas in situ y en tiempo real elimina las alteraciones inesperadas del proceso, los productos que no cumplen las especificaciones y el costoso reprocesamiento del material.
Los científicos recristalizan compuestos químicos de alto valor para obtener un producto cristalino con las propiedades físicas deseadas y con una eficiencia de procesos óptima. Se requieren siete pasos para diseñar el proceso de recristalización ideal, desde la elección del disolvente adecuado hasta la obtención de un producto de cristal seco. Esta guía de recristalización explica paso a paso el procedimiento para desarrollar un proceso de recristalización. Explica qué información se requiere en cada etapa de la recristalización y describe cómo controlar los parámetros críticos del proceso.
Las curvas de solubilidad se suelen usar para ilustrar la relación entre solubilidad, temperatura y tipo de disolvente. Mediante el trazado de la temperatura y la solubilidad, los científicos pueden elaborar el marco necesario para desarrollar el proceso de cristalización deseado. Una vez que se ha escogido un disolvente apropiado, la curva de solubilidad se convierte en una herramienta fundamental para el desarrollo de un proceso de cristalización eficaz.
Los científicos y los ingenieros obtienen control sobre los procesos de cristalización gracias al detenido ajuste del nivel de supersaturación durante el proceso. La supersaturación es la fuerza impulsora de la nucleación y del crecimiento en la cristalización y, en última instancia, la que dicta la distribución final del tamaño de los cristales.
Las tecnologías basadas en sensores en el proceso se aplican para realizar seguimientos de los cambios del tamaño y la forma de las partículas en una concentración completa sin necesidad de dilución o extracción. Los parámetros del proceso con los valores correctos para el rendimiento de la cristalización se pueden optimizar mediante el seguimiento de la velocidad y el grado de cambio de las partículas y los cristales en tiempo real.
Este es uno de los pasos fundamentales para optimizar el comportamiento de la cristalización. Cuando se diseña una estrategia de siembra, se deben tener encuentra algunos parámetros como el tamaño de las semillas, la carga de las semillas (masa) y la temperatura de adición de las semillas. Estos parámetros, por lo general, se optimizan en función de la cinética del proceso y las propiedades que se desea que tengan las partículas finales, y deben permanecer invariables durante el escalado y la transferencia entre tecnologías.
En una cristalización con antidisolvente, la tasa de adición de disolvente, la ubicación de la adición y el mezclado afectan a la supersaturación local de un recipiente o tubería. Para modificar el tamaño y el recuento de los cristales, los científicos e ingenieros ajustan el protocolo de adición de antidisolvente y el nivel de supersaturación.
El perfil de enfriamiento afecta en gran medida a la supersaturación y la cinética de la cristalización. La temperatura del proceso se optimiza para adaptarse al área de superficie de los cristales a fin de conseguir una formación óptima en lugar de nucleación. Las técnicas avanzadas permiten controlar la temperatura para modificar la supersaturación y el tamaño y la forma de los cristales.
El cambio de la escala o de las condiciones del mezclado en un cristalizador puede afectar directamente a la cinética del proceso de cristalización y al tamaño final del cristal. Es importante tener en cuenta los efectos de la transferencia de calor y de masa para los sistemas de enfriamiento y antidisolvente respectivamente, ya que los gradientes de temperatura o concentración pueden derivar en una falta de homogeneidad en el nivel imperante de supersaturación.
Un proceso de cristalización por lotes bien diseñado es aquel que puede escalarse con éxito a escala de producción, dando la distribución de tamaños de cristal, el rendimiento, la forma y la pureza deseados. La optimización de la cristalización por lotes requiere mantener un control adecuado de la temperatura del cristalizador (o de la composición del disolvente).