Offline-Analysen werden häufig zur Bestimmung der Kristallverteilung am Ende eines Experiments oder während eines Produktionslaufs eingesetzt. Dieser Ansatz ist zwar gängig, jedoch bestehen bei Offline-Analysen Einschränkungen, die bei Kristallen relevant sind:
Dieser Satz von ParticleView-Bildern illustriert auf übersichtliche Weise die komplexe Grösse, Form und Struktur verschiedener Kristalle. Von grossen rundlichen Blöcken bis zu schönen und empfindlichen Dendriten unterscheiden sich Kristallprodukte häufig stark, wodurch sich Herausforderungen für die effektive Trennung und spätere Handhabung ergeben.
Durch die Beobachtung von Kristallen in Echtzeit können Wissenschaftler routinemäßig ein detailliertes und zuverlässiges Prozessverständnis entwickeln. ParticleView V19 mit PVM-Technologie ermöglicht Wissenschaftlern eine direkte Beobachtung von wachsenden Kristallen und Kristallstrukturen, ohne dass eine Probennahme erforderlich ist.
Kristallisationsmechanismen wie Keimbildung, Wachstum, Bruch und Formänderungen können unter sich dynamisch verändernden Prozessbedingungen beobachtet werden, und die geeignetsten Prozessparameter können mit Bestimmtheit gewählt werden. Ein einfacher, bildbasierter Trend, der anzeigt, wie Kristallgrösse, -form und -anzahl hochauflösende Echtzeitbilder ergänzen und die sofortige Bestimmung und Untersuchung wichtiger Prozessereignisse ermöglicht.
Mithilfe von ParticleTrack können Wissenschaftler:
Ein ParticleTrack-Sensor mit FBMR-Technologie wird in eine fliessende Suspension oder ein Tröpfchensystem eingetaucht, wobei keine Verdünnung erforderlich ist. Mit dem fokussierten Laser wird die Oberfläche des Sensorfensters gescannt und einzelne Sehnenlängen verfolgt, wobei Grösse, Form und Anzahl der Partikel ermittelt werden. Diese Echtzeitmessung wird als Verteilung dargestellt und Statistiken (z. B. Mittelwert, Anzahl) in ihrem zeitlichen Verlauf angezeigt.
Kristallisationsverfahren bieten die einzigartige Möglichkeit, gezielt eine optimierte Kristallgrösse und Formverteilung zu kontrollieren. Hierdurch können Filtrations- und Trockenzeiten dramatisch reduziert, Lager- und Transportbedarf sowie Haltbarkeitsprobleme beseitigt und ein konsistenter und wiederholbarer Prozess zu niedrigeren Kosten gewährleistet werden.
In dieser Reihe an White Papern werden grundlegende und fortschrittliche Strategien zur Optimierung der Kristallgrösse und Formverteilung erläutert.
Erfahren Sie, wie ein bildbasiertes Prozesstrending die Kristallisationszykluszeit reduzieren und die Qualität steigern kann und zugleich die Kristallgrösse und -form beibehält.
In diesem White Paper werden die "Best Practices" für die Entwicklung einer Impfstrategie sowie Parameter dargestellt, die bei der Implementierung eines Impfprotokolls berücksichtigt werden sollten. Obwohl sich das Verständnis der Kristallisation in den vergangenen 30 Jahren verbessert hat, stellt das Impfen immer noch eine Herausforderung dar.
Polymorphie ist ein häufiges Phänomen vieler kristalliner Feststoffe in der Pharma- und feinchemischen Industrie. Wissenschaftler kristallisieren bewusst ein gewünschtes Polymorph, um die Eigenschaften bei der Isolierung zu verbessern, Herausforderungen bei nachgelagerten Prozessen zu überwinden, die Bioverfügbarkeit zu erhöhen oder Patentkonflikte zu vermeiden. Durch die Identifikation polymorpher und morphologischer Transformationen in situ und in Echtzeit werden unerwartete Prozessprobleme, nicht konforme Produkte und kostspielige Wiederaufbereitungen von Material vermieden.
Wissenschaftler rekristallisieren hochwertige chemische Verbindungen, um ein Kristallprodukt mit den gewünschten physikalischen Eigenschaften bei optimaler Prozesseffizienz zu erzeugen. Es sind sieben Schritte erforderlich, um den idealen Rekristallisationsprozess zu entwerfen. Dieser reicht von der Auswahl des richtigen Lösungsmittels bis zum Erhalt eines trockenen Kristallprodukts. Dieser Rekristallisationsleitfaden erklärt Schritt für Schritt, wie ein Rekristallisationsprozess entwickelt wird. Es wird erläutert, welche Informationen auf welcher Ebene der Rekristallisation erforderlich sind und wie wesentliche Prozessparameter gesteuert werden können.
Löslichkeitskurven werden häufig eingesetzt, um das Verhältnis von Löslichkeit, Temperatur und Lösungsmittelart darzustellen. Durch Auftragen der Temperatur gegen die Löslichkeit können Wissenschaftler den Parameterraum erstellen, den sie zur Entwicklung des gewünschten Kristallisationsprozesses benötigen. Sobald ein geeignetes Lösungsmittel ausgewählt ist, wird die Löslichkeitskurve zu einem wichtigen Instrument für die Entwicklung eines effizienten Kristallisationsprozesses.
Wissenschaftler und Ingenieure können Kristallisationsprozesse kontrollieren, indem sie den Grad der Übersättigung während des Prozesses vorsichtig anpassen. Die Übersättigung ist die treibende Kraft für die Keimbildung und das Wachstum der Kristallisation und bestimmt schliesslich die finale Kristallgrössenverteilung.
In-Process sondenbasierte Technologien werden eingesetzt, um Partikelgrössen und Formänderungen bei voller Konzentration ohne erforderliche Verdünnung oder Aufbereitung nachzuverfolgen. Durch die Verfolgung der Rate und des Änderungsgrades von Partikeln und Kristallen in Echtzeit können die korrekten Prozessparameter für die Kristallisationsleistung optimiert werden.
Das Impfen ist einer der kritischsten Schritte bei der Optimierung des Kristallisationsverhaltens. Bei der Entwicklung einer Impfstrategie sind zahlreiche Parameter zu berücksichtigen, z. B. die Impfkristallgröße, Impfmenge (Masse) und Temperatur bei der Zugabe der Impfung. Diese Parameter werden in der Regel gemäß der Prozesskinetik und den gewünschten abschließenden Partikeleigenschaften optimiert und müssen während des Scale-Ups und Technologietransfers konsistent bleiben.
Die Flüssig-Flüssig-Phasentrennung, auch Ausölen genannt, ist ein häufig schwierig zu erkennender Partikelmechanismus, der bei Kristallisationsprozessen auftreten kann. Erfahren Sie mehr.
Bei einer Anti-Lösungsmittel-Kristallisation wirken sich die Lösungsmittelzugaberate, der Zugabeort und die Mischung auf die lokale Übersättigung in einem Gefäss oder einer Pipeline aus. Wissenschaftler und Ingenieure ändern die Kristallgrösse und -anzahl durch Anpassung des Anti-Lösungsmittelzugabeprotokolls und des Übersättigungsniveaus.
Das Abkühlprofil hat einen grossen Einfluss auf die Übersättigung und die Kristallisationskinetik. Die Prozesstemperatur ist optimiert, um die Oberfläche der Kristalle für ein optimales Wachstum gegenüber der Keimbildung anzupassen.Modernste Techniken bieten eine Temperaturregelung zur Änderung der Übersättigung und der Kristallgröße und -form.
Eine veränderte Skalierung oder wechselnde Mischbedingungen in einem Kristallisator können sich direkt auf die Kinetik des Kristallisationsverfahrens und die Endgröße der Kristalle auswirken. Die Auswirkungen der Wärme- und Massenübertragung spielen eine erheblich Rolle für Kühl- und Anti-Solventien-Systeme, bei denen Temperatur- und Konzentrationsgradienten zu einer Inhomogenität im vorwiegenden Übersättigungsniveau führen können.
Die Proteinkristallisation ist der Vorgang beziehungsweise die Methode zur Erzeugung strukturierter, geordneter Gitter für häufig komplexe Makromoleküle.
Die Laktosekristallisation ist ein industrielles Verfahren zur Abtrennung von Laktose aus Molkelösungen durch kontrollierte Kristallisation.
Ein gut durchdachter batch kristallisation prozess kann erfolgreich in den Produktionsmaßstab skaliert werden und liefert die gewünschte Kristallgrößenverteilung, Ausbeute, Form und Reinheit. Die Optimierung der batch kristallisation erfordert eine angemessene Kontrolle der Temperatur des Kristallisators (oder der Lösungsmittelzusammensetzung).
Die kontinuierliche kristallisation wird durch Fortschritte in der Prozessmodellierung und im Design von Kristallisatoren ermöglicht, die die Kristallgrößenverteilung in Echtzeit durch direkte Überwachung der Kristallpopulation steuern.
The MSMPR (Mixed Suspension Mixed Product Removal) crystallizer is a type of crystallizer used in industrial processes to produce high-purity crystals.
Polymorphie ist ein häufiges Phänomen vieler kristalliner Feststoffe in der Pharma- und feinchemischen Industrie. Wissenschaftler kristallisieren bewusst ein gewünschtes Polymorph, um die Eigenschaften bei der Isolierung zu verbessern, Herausforderungen bei nachgelagerten Prozessen zu überwinden, die Bioverfügbarkeit zu erhöhen oder Patentkonflikte zu vermeiden. Durch die Identifikation polymorpher und morphologischer Transformationen in situ und in Echtzeit werden unerwartete Prozessprobleme, nicht konforme Produkte und kostspielige Wiederaufbereitungen von Material vermieden.
Wissenschaftler rekristallisieren hochwertige chemische Verbindungen, um ein Kristallprodukt mit den gewünschten physikalischen Eigenschaften bei optimaler Prozesseffizienz zu erzeugen. Es sind sieben Schritte erforderlich, um den idealen Rekristallisationsprozess zu entwerfen. Dieser reicht von der Auswahl des richtigen Lösungsmittels bis zum Erhalt eines trockenen Kristallprodukts. Dieser Rekristallisationsleitfaden erklärt Schritt für Schritt, wie ein Rekristallisationsprozess entwickelt wird. Es wird erläutert, welche Informationen auf welcher Ebene der Rekristallisation erforderlich sind und wie wesentliche Prozessparameter gesteuert werden können.
Löslichkeitskurven werden häufig eingesetzt, um das Verhältnis von Löslichkeit, Temperatur und Lösungsmittelart darzustellen. Durch Auftragen der Temperatur gegen die Löslichkeit können Wissenschaftler den Parameterraum erstellen, den sie zur Entwicklung des gewünschten Kristallisationsprozesses benötigen. Sobald ein geeignetes Lösungsmittel ausgewählt ist, wird die Löslichkeitskurve zu einem wichtigen Instrument für die Entwicklung eines effizienten Kristallisationsprozesses.
Wissenschaftler und Ingenieure können Kristallisationsprozesse kontrollieren, indem sie den Grad der Übersättigung während des Prozesses vorsichtig anpassen. Die Übersättigung ist die treibende Kraft für die Keimbildung und das Wachstum der Kristallisation und bestimmt schliesslich die finale Kristallgrössenverteilung.
In-Process sondenbasierte Technologien werden eingesetzt, um Partikelgrössen und Formänderungen bei voller Konzentration ohne erforderliche Verdünnung oder Aufbereitung nachzuverfolgen. Durch die Verfolgung der Rate und des Änderungsgrades von Partikeln und Kristallen in Echtzeit können die korrekten Prozessparameter für die Kristallisationsleistung optimiert werden.
Das Impfen ist einer der kritischsten Schritte bei der Optimierung des Kristallisationsverhaltens. Bei der Entwicklung einer Impfstrategie sind zahlreiche Parameter zu berücksichtigen, z. B. die Impfkristallgröße, Impfmenge (Masse) und Temperatur bei der Zugabe der Impfung. Diese Parameter werden in der Regel gemäß der Prozesskinetik und den gewünschten abschließenden Partikeleigenschaften optimiert und müssen während des Scale-Ups und Technologietransfers konsistent bleiben.
Bei einer Anti-Lösungsmittel-Kristallisation wirken sich die Lösungsmittelzugaberate, der Zugabeort und die Mischung auf die lokale Übersättigung in einem Gefäss oder einer Pipeline aus. Wissenschaftler und Ingenieure ändern die Kristallgrösse und -anzahl durch Anpassung des Anti-Lösungsmittelzugabeprotokolls und des Übersättigungsniveaus.
Das Abkühlprofil hat einen grossen Einfluss auf die Übersättigung und die Kristallisationskinetik. Die Prozesstemperatur ist optimiert, um die Oberfläche der Kristalle für ein optimales Wachstum gegenüber der Keimbildung anzupassen.Modernste Techniken bieten eine Temperaturregelung zur Änderung der Übersättigung und der Kristallgröße und -form.
Eine veränderte Skalierung oder wechselnde Mischbedingungen in einem Kristallisator können sich direkt auf die Kinetik des Kristallisationsverfahrens und die Endgröße der Kristalle auswirken. Die Auswirkungen der Wärme- und Massenübertragung spielen eine erheblich Rolle für Kühl- und Anti-Solventien-Systeme, bei denen Temperatur- und Konzentrationsgradienten zu einer Inhomogenität im vorwiegenden Übersättigungsniveau führen können.
Ein gut durchdachter batch kristallisation prozess kann erfolgreich in den Produktionsmaßstab skaliert werden und liefert die gewünschte Kristallgrößenverteilung, Ausbeute, Form und Reinheit. Die Optimierung der batch kristallisation erfordert eine angemessene Kontrolle der Temperatur des Kristallisators (oder der Lösungsmittelzusammensetzung).