Les équations qui gouvernent la croissance et la nucléation des cristaux, également décrites dans (J. Nývlt (1968) Kinetics of Nucleation in Solutions. Journal of Crystal Growth, 3 – 4, 377 – 383), indiquent que la surface de la suspension contenant les cristaux joue un rôle important dans la détermination de la nucléation des cristaux et la cinétique de la croissance. Au début du processus de cristallisation, la surface des cristaux présents dans la suspension est faible, ce qui signifie que la nucléation ne peut pas prendre le pas sur la croissance, quels que soient les autres facteurs cinétiques. Au cours du processus, la surface augmente, ce qui permet à la cinétique de croissance d'être plus favorable. En cas d'application d'une vitesse de refroidissement linéaire (comme indiqué à droite) à un processus de cristallisation, la sursaturation peut s'accumuler initialement lorsqu'aucune surface n'est disponible pour la croissance. Cette accumulation entraîne une cinétique de cristallisation rapide et souvent imprévisible, où la nucléation l'emporte souvent.
Une technique utile pour améliorer la croissance consiste à commencer par un ralentissement très lent lorsque la surface est limitée (comme illustré à droite), afin de maintenir une sursaturation faible et de favoriser la croissance. Après un certain temps, une fois la surface plus importante, la vitesse de refroidissement peut être augmentée pour réduire le temps par lot tout en continuant à favoriser la croissance. Cette technique permet d'obtenir l'équilibre idéal entre le contrôle de la sursaturation et une nucléation excessive, tout en évitant les temps par lot très longs (P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’Sullivan et D. O’Grady (2005) A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes. Organic Process Research & Development, 9(3), 348 – 355). L'inconvénient de cette approche est que la mise en œuvre d'un profil de refroidissement ou d'ajout d'antisolvant non linéaire dans l'usine peut être difficile et complique le procédé. Toutefois, vous pouvez également utiliser un petit nombre de rampes linéaires pour obtenir un résultat similaire.
L'avantage de la mise en œuvre de vitesses de refroidissement non linéaires afin de maintenir une sursaturation constante tout au long du procédé a été démontré par la mise en œuvre d'une boucle de contrôle qui ajuste la température du procédé afin de maintenir une sursaturation constante. Ce résultat a été décrit dans V. Liotta et V. Sabesan (2004) Monitoring and Feedback Control of Supersaturation Using ATR-FTIR to Produce an Active Pharmaceutical Ingredient of a Desired Crystal Size. Organic Process Research & Development, 8(3), 488 – 494. Copyright (2004) American Chemical Society, où un algorithme de contrôle est utilisé pour effectuer une cristallisation à une sursaturation constante (à gauche). Dans cet exemple, la sursaturation est surveillée grâce à un contrôle par FTIR in situ et le profil de température obtenu n'est pas linéaire : lent au début, il s'accélère vers la fin.
Ce livre blanc aborde les techniques courantes d'analyse de la taille des particules et leur utilisation afin d'obtenir des particules de qualité élevée. Nous citerons par exemple l'utilisation d'analyseurs hors ligne de la taille des particules avec des outils de caractérisation des particules en ligne pour optimiser les procédés.
Les étapes élémentaires de la cristallisation offrent la possibilité unique de cibler et de contrôler la distribution de taille et de forme des cristaux, pour :
Le polymorphisme est un phénomène courant chez de nombreux solides cristallins dans les secteurs de la chimie fine et de l'industrie pharmaceutique. Les scientifiques cristallisent volontairement un polymorphe souhaité pour améliorer les propriétés d'isolement, surmonter les défis liés aux procédés en aval, augmenter la biodisponibilité ou pour éviter des litiges associés aux brevets. L'identification des transformations morphologiques et polymorphiques in situ et en temps réel permet d'éliminer toute variation inattendue du procédé, les produits non conformes et le retraitement de matériaux coûteux.
Les chercheurs recristallisent des composés chimiques onéreux pour obtenir un produit cristallin aux propriétés physiques souhaitées, avec un rendement de procédé optimal. Sept étapes sont requises pour concevoir le procédé de cristallisation idéal, du choix du solvant adapté à l'obtention d'un produit cristallin sec. Ce guide sur la recristallisation explique la procédure de développement d'un procédé de recristallisation, étape par étape. Il détaille les informations requises à chaque étape de recristallisation et explique comment contrôler les paramètres critiques du procédé.
Les courbes de solubilité sont couramment utilisées pour illustrer la relation entre la solubilité, la température et le type de solvant. En disposant du tracé de la température en fonction de la solubilité, les scientifiques peuvent créer le cadre nécessaire pour développer le procédé de cristallisation désiré. Une fois qu'un solvant approprié a été choisi, la courbe de solubilité devient un outil essentiel dans le développement d'un procédé de cristallisation efficace.
Les scientifiques et les ingénieurs prennent le contrôle des procédés de cristallisation en ajustant avec soin le niveau de sursaturation au cours du procédé. La sursaturation est l'élément moteur pour la nucléation et la croissance des cristaux et elle dicte la distribution finale de la taille des cristaux.
Des technologies reposant sur l'utilisation d'une sonde en cours de fabrication sont appliquées pour contrôler la taille des particules et les modifications de forme à pleine concentration sans dilution ou extraction nécessaire. En suivant le taux et le degré de modification des particules et des cristaux en temps réel, les paramètres de procédés corrects pour le rendement de la cristallisation peuvent être optimisés.
L'ensemencement est l'une des étapes cruciales de l'optimisation du comportement de cristallisation. Lors de la conception de la stratégie d'ensemencement, il faut tenir compte de paramètres tels que la taille des semences, la charge (masse) des semences et la température d'ajout. Ces paramètres sont généralement optimisés en fonction de la cinétique du procédé et des propriétés finales souhaitées des particules ; ils doivent rester constants pendant l'extrapolation et le transfert de technologie.
La séparation de phase liquide-liquide, ou séparation de phase, est un mécanisme particulaire souvent difficile à détecter qui peut survenir pendant les procédés de cristallisation. En savoir plus.
Lors d'une cristallisation avec antisolvant, la vitesse d'ajout de solvant, l'emplacement d'ajout et le mélange ont un impact sur la sursaturation dans une cuve ou une canalisation. Les scientifiques et les ingénieurs modifient la taille et le nombre de cristaux en ajustant le protocole d'ajout d'antisolvant et le niveau de sursaturation.
Le profil de refroidissement a un impact important sur la sursaturation et la cinétique de cristallisation. La température du procédé est optimisée afin de correspondre à la surface des cristaux, pour une croissance optimale par rapport à la nucléation. Des techniques avancées permettent un contrôle de la température afin de modifier la sursaturation ainsi que la taille et la forme des cristaux.
Le fait de changer d'échelle ou de conditions de mélange dans un malaxeur peut avoir un impact direct sur la cinétique du procédé de cristallisation et sur la taille finale des cristaux. Les effets du transfert de masse et de chaleur sont importants dans la prise en compte des systèmes respectifs de refroidissement et antisolvant, dans lesquels les gradients de température ou de concentration sont susceptibles de produire un manque d'homogénéité du niveau prédominant de sursaturation.
La cristallisation des protéines est le procédé et la méthode de création de réseaux structurés et ordonnés de macromolécules souvent complexes.
Lactose crystallization is an industrial practice to separate lactose from whey solutions via controlled crystallization.
A well-designed batch crystallization process is one that can be scaled successfully to production scale - giving the desired crystal size distribution, yield, form and purity. Batch crystallization optimization requires maintaining adequate control of the crystallizer temperature (or solvent composition).
Continuous crystallization is made possible by advances in process modeling and crystallizer design, which leverage the ability to control crystal size distribution in real time by directly monitoring the crystal population.
The MSMPR (Mixed Suspension Mixed Product Removal) crystallizer is a type of crystallizer used in industrial processes to produce high-purity crystals.
Le polymorphisme est un phénomène courant chez de nombreux solides cristallins dans les secteurs de la chimie fine et de l'industrie pharmaceutique. Les scientifiques cristallisent volontairement un polymorphe souhaité pour améliorer les propriétés d'isolement, surmonter les défis liés aux procédés en aval, augmenter la biodisponibilité ou pour éviter des litiges associés aux brevets. L'identification des transformations morphologiques et polymorphiques in situ et en temps réel permet d'éliminer toute variation inattendue du procédé, les produits non conformes et le retraitement de matériaux coûteux.
Les chercheurs recristallisent des composés chimiques onéreux pour obtenir un produit cristallin aux propriétés physiques souhaitées, avec un rendement de procédé optimal. Sept étapes sont requises pour concevoir le procédé de cristallisation idéal, du choix du solvant adapté à l'obtention d'un produit cristallin sec. Ce guide sur la recristallisation explique la procédure de développement d'un procédé de recristallisation, étape par étape. Il détaille les informations requises à chaque étape de recristallisation et explique comment contrôler les paramètres critiques du procédé.
Les courbes de solubilité sont couramment utilisées pour illustrer la relation entre la solubilité, la température et le type de solvant. En disposant du tracé de la température en fonction de la solubilité, les scientifiques peuvent créer le cadre nécessaire pour développer le procédé de cristallisation désiré. Une fois qu'un solvant approprié a été choisi, la courbe de solubilité devient un outil essentiel dans le développement d'un procédé de cristallisation efficace.
Les scientifiques et les ingénieurs prennent le contrôle des procédés de cristallisation en ajustant avec soin le niveau de sursaturation au cours du procédé. La sursaturation est l'élément moteur pour la nucléation et la croissance des cristaux et elle dicte la distribution finale de la taille des cristaux.
Des technologies reposant sur l'utilisation d'une sonde en cours de fabrication sont appliquées pour contrôler la taille des particules et les modifications de forme à pleine concentration sans dilution ou extraction nécessaire. En suivant le taux et le degré de modification des particules et des cristaux en temps réel, les paramètres de procédés corrects pour le rendement de la cristallisation peuvent être optimisés.
L'ensemencement est l'une des étapes cruciales de l'optimisation du comportement de cristallisation. Lors de la conception de la stratégie d'ensemencement, il faut tenir compte de paramètres tels que la taille des semences, la charge (masse) des semences et la température d'ajout. Ces paramètres sont généralement optimisés en fonction de la cinétique du procédé et des propriétés finales souhaitées des particules ; ils doivent rester constants pendant l'extrapolation et le transfert de technologie.
Lors d'une cristallisation avec antisolvant, la vitesse d'ajout de solvant, l'emplacement d'ajout et le mélange ont un impact sur la sursaturation dans une cuve ou une canalisation. Les scientifiques et les ingénieurs modifient la taille et le nombre de cristaux en ajustant le protocole d'ajout d'antisolvant et le niveau de sursaturation.
Le profil de refroidissement a un impact important sur la sursaturation et la cinétique de cristallisation. La température du procédé est optimisée afin de correspondre à la surface des cristaux, pour une croissance optimale par rapport à la nucléation. Des techniques avancées permettent un contrôle de la température afin de modifier la sursaturation ainsi que la taille et la forme des cristaux.
Le fait de changer d'échelle ou de conditions de mélange dans un malaxeur peut avoir un impact direct sur la cinétique du procédé de cristallisation et sur la taille finale des cristaux. Les effets du transfert de masse et de chaleur sont importants dans la prise en compte des systèmes respectifs de refroidissement et antisolvant, dans lesquels les gradients de température ou de concentration sont susceptibles de produire un manque d'homogénéité du niveau prédominant de sursaturation.
A well-designed batch crystallization process is one that can be scaled successfully to production scale - giving the desired crystal size distribution, yield, form and purity. Batch crystallization optimization requires maintaining adequate control of the crystallizer temperature (or solvent composition).