La sursaturation est générée en réduisant la solubilité du produit en solution, généralement par refroidissement ou ajout d'antisolvant. La vitesse de refroidissement ou d'ajout d'antisolvant influence directement le niveau de sursaturation.
Dans cet exemple, des solutions sous-saturées d'acide benzoïque dans des mélanges d'éthanol/eau sont préparées, et de l'eau est ajoutée à des vitesses fixes respectives de 0,1 g/s et 0,2 g/s, à une température fixe de 25 °C. La concentration de liquide est mesurée en temps réel par spectroscopie FTIR in situ. Dans la figure de droite, la courbe de solubilité de l'acide benzoïque dans les mélanges éthanol-eau est affichée avec les profils de désursaturation pour chaque expérience. Le profil de désursaturation indique que la solution est d'abord dans la région sous-saturée. À mesure que de l'eau est ajoutée, le procédé dépasse la courbe de solubilité dans la région sursaturée. La concentration de liquide diminue avec la nucléation des cristaux et reste proche de la courbe de solubilité. À la fin de l'ajout d'antisolvant, la concentration de liquide baisse jusqu'au niveau de la courbe de solubilité. À la vitesse d'ajout la plus élevée, le niveau de sursaturation est plus élevé tout au long du procédé, en raison d'une accumulation qui ne peut pas être éliminée assez vite par la croissance et la nucléation des cristaux.
Dans cette expérience, la modification des paramètres du procédé et de la sursaturation a un impact sur la taille et la forme des cristaux. Les images capturées à l'aide de la technologie PVM (ParticleView) à la fin de chaque expérience illustrent ce point (à droite). La vitesse d'ajout la plus lente permet d'obtenir de grandes plaques allongées et bien formées, tandis que la vitesse la plus rapide permet d'obtenir des aiguilles fines qui s'agglomèrent facilement. Ce résultat indique qu'en modifiant la sursaturation d'un système de cristallisation, il est possible de modifier la taille, la forme et le degré d'agglomération des cristaux. Cela démontre également l'importance de la compréhension et du contrôle du niveau principal de sursaturation.
Cet exemple simple illustre un principe essentiel :
Le contrôle des vitesses d'ajout d'antisolvant afin de contrôler la taille des cristaux est un principe scientifique compris et établi. Toutefois, le développement et l'amélioration efficaces et basés sur des preuves du procédé de cristallisation sont plus nuancés. Par exemple, une sursaturation rapide peut entraîner la génération d'impuretés indésirables sous forme de phases huileuses transitoires (a), ou de formes polymorphiques indésirables (b). De même, il n'est pas toujours possible de sacrifier la durée du cycle pour obtenir de grands cristaux ; il n'est pas possible d'utiliser des vitesses de refroidissement ou d'ajout d'antisolvant très lentes.
Une méthode qui simplifie l'utilisation de spectres ATR-FTIR sans étalonnage in situ pour la production et le contrôle de trajectoires qualitatives de sursaturation.
Les étapes élémentaires de la cristallisation offrent la possibilité unique de cibler et de contrôler la distribution de taille et de forme des cristaux, pour :
Le polymorphisme est un phénomène courant chez de nombreux solides cristallins dans les secteurs de la chimie fine et de l'industrie pharmaceutique. Les scientifiques cristallisent volontairement un polymorphe souhaité pour améliorer les propriétés d'isolement, surmonter les défis liés aux procédés en aval, augmenter la biodisponibilité ou pour éviter des litiges associés aux brevets. L'identification des transformations morphologiques et polymorphiques in situ et en temps réel permet d'éliminer toute variation inattendue du procédé, les produits non conformes et le retraitement de matériaux coûteux.
Les chercheurs recristallisent des composés chimiques onéreux pour obtenir un produit cristallin aux propriétés physiques souhaitées, avec un rendement de procédé optimal. Sept étapes sont requises pour concevoir le procédé de cristallisation idéal, du choix du solvant adapté à l'obtention d'un produit cristallin sec. Ce guide sur la recristallisation explique la procédure de développement d'un procédé de recristallisation, étape par étape. Il détaille les informations requises à chaque étape de recristallisation et explique comment contrôler les paramètres critiques du procédé.
Les courbes de solubilité sont couramment utilisées pour illustrer la relation entre la solubilité, la température et le type de solvant. En disposant du tracé de la température en fonction de la solubilité, les scientifiques peuvent créer le cadre nécessaire pour développer le procédé de cristallisation désiré. Une fois qu'un solvant approprié a été choisi, la courbe de solubilité devient un outil essentiel dans le développement d'un procédé de cristallisation efficace.
Les scientifiques et les ingénieurs prennent le contrôle des procédés de cristallisation en ajustant avec soin le niveau de sursaturation au cours du procédé. La sursaturation est l'élément moteur pour la nucléation et la croissance des cristaux et elle dicte la distribution finale de la taille des cristaux.
Des technologies reposant sur l'utilisation d'une sonde en cours de fabrication sont appliquées pour contrôler la taille des particules et les modifications de forme à pleine concentration sans dilution ou extraction nécessaire. En suivant le taux et le degré de modification des particules et des cristaux en temps réel, les paramètres de procédés corrects pour le rendement de la cristallisation peuvent être optimisés.
L'ensemencement est l'une des étapes cruciales de l'optimisation du comportement de cristallisation. Lors de la conception de la stratégie d'ensemencement, il faut tenir compte de paramètres tels que la taille des semences, la charge (masse) des semences et la température d'ajout. Ces paramètres sont généralement optimisés en fonction de la cinétique du procédé et des propriétés finales souhaitées des particules ; ils doivent rester constants pendant l'extrapolation et le transfert de technologie.
La séparation de phase liquide-liquide, ou séparation de phase, est un mécanisme particulaire souvent difficile à détecter qui peut survenir pendant les procédés de cristallisation. En savoir plus.
Lors d'une cristallisation avec antisolvant, la vitesse d'ajout de solvant, l'emplacement d'ajout et le mélange ont un impact sur la sursaturation dans une cuve ou une canalisation. Les scientifiques et les ingénieurs modifient la taille et le nombre de cristaux en ajustant le protocole d'ajout d'antisolvant et le niveau de sursaturation.
Le profil de refroidissement a un impact important sur la sursaturation et la cinétique de cristallisation. La température du procédé est optimisée afin de correspondre à la surface des cristaux, pour une croissance optimale par rapport à la nucléation. Des techniques avancées permettent un contrôle de la température afin de modifier la sursaturation ainsi que la taille et la forme des cristaux.
Le fait de changer d'échelle ou de conditions de mélange dans un malaxeur peut avoir un impact direct sur la cinétique du procédé de cristallisation et sur la taille finale des cristaux. Les effets du transfert de masse et de chaleur sont importants dans la prise en compte des systèmes respectifs de refroidissement et antisolvant, dans lesquels les gradients de température ou de concentration sont susceptibles de produire un manque d'homogénéité du niveau prédominant de sursaturation.
La cristallisation des protéines est le procédé et la méthode de création de réseaux structurés et ordonnés de macromolécules souvent complexes.
Lactose crystallization is an industrial practice to separate lactose from whey solutions via controlled crystallization.
A well-designed batch crystallization process is one that can be scaled successfully to production scale - giving the desired crystal size distribution, yield, form and purity. Batch crystallization optimization requires maintaining adequate control of the crystallizer temperature (or solvent composition).
Continuous crystallization is made possible by advances in process modeling and crystallizer design, which leverage the ability to control crystal size distribution in real time by directly monitoring the crystal population.
The MSMPR (Mixed Suspension Mixed Product Removal) crystallizer is a type of crystallizer used in industrial processes to produce high-purity crystals.
Le polymorphisme est un phénomène courant chez de nombreux solides cristallins dans les secteurs de la chimie fine et de l'industrie pharmaceutique. Les scientifiques cristallisent volontairement un polymorphe souhaité pour améliorer les propriétés d'isolement, surmonter les défis liés aux procédés en aval, augmenter la biodisponibilité ou pour éviter des litiges associés aux brevets. L'identification des transformations morphologiques et polymorphiques in situ et en temps réel permet d'éliminer toute variation inattendue du procédé, les produits non conformes et le retraitement de matériaux coûteux.
Les chercheurs recristallisent des composés chimiques onéreux pour obtenir un produit cristallin aux propriétés physiques souhaitées, avec un rendement de procédé optimal. Sept étapes sont requises pour concevoir le procédé de cristallisation idéal, du choix du solvant adapté à l'obtention d'un produit cristallin sec. Ce guide sur la recristallisation explique la procédure de développement d'un procédé de recristallisation, étape par étape. Il détaille les informations requises à chaque étape de recristallisation et explique comment contrôler les paramètres critiques du procédé.
Les courbes de solubilité sont couramment utilisées pour illustrer la relation entre la solubilité, la température et le type de solvant. En disposant du tracé de la température en fonction de la solubilité, les scientifiques peuvent créer le cadre nécessaire pour développer le procédé de cristallisation désiré. Une fois qu'un solvant approprié a été choisi, la courbe de solubilité devient un outil essentiel dans le développement d'un procédé de cristallisation efficace.
Les scientifiques et les ingénieurs prennent le contrôle des procédés de cristallisation en ajustant avec soin le niveau de sursaturation au cours du procédé. La sursaturation est l'élément moteur pour la nucléation et la croissance des cristaux et elle dicte la distribution finale de la taille des cristaux.
Des technologies reposant sur l'utilisation d'une sonde en cours de fabrication sont appliquées pour contrôler la taille des particules et les modifications de forme à pleine concentration sans dilution ou extraction nécessaire. En suivant le taux et le degré de modification des particules et des cristaux en temps réel, les paramètres de procédés corrects pour le rendement de la cristallisation peuvent être optimisés.
L'ensemencement est l'une des étapes cruciales de l'optimisation du comportement de cristallisation. Lors de la conception de la stratégie d'ensemencement, il faut tenir compte de paramètres tels que la taille des semences, la charge (masse) des semences et la température d'ajout. Ces paramètres sont généralement optimisés en fonction de la cinétique du procédé et des propriétés finales souhaitées des particules ; ils doivent rester constants pendant l'extrapolation et le transfert de technologie.
Lors d'une cristallisation avec antisolvant, la vitesse d'ajout de solvant, l'emplacement d'ajout et le mélange ont un impact sur la sursaturation dans une cuve ou une canalisation. Les scientifiques et les ingénieurs modifient la taille et le nombre de cristaux en ajustant le protocole d'ajout d'antisolvant et le niveau de sursaturation.
Le profil de refroidissement a un impact important sur la sursaturation et la cinétique de cristallisation. La température du procédé est optimisée afin de correspondre à la surface des cristaux, pour une croissance optimale par rapport à la nucléation. Des techniques avancées permettent un contrôle de la température afin de modifier la sursaturation ainsi que la taille et la forme des cristaux.
Le fait de changer d'échelle ou de conditions de mélange dans un malaxeur peut avoir un impact direct sur la cinétique du procédé de cristallisation et sur la taille finale des cristaux. Les effets du transfert de masse et de chaleur sont importants dans la prise en compte des systèmes respectifs de refroidissement et antisolvant, dans lesquels les gradients de température ou de concentration sont susceptibles de produire un manque d'homogénéité du niveau prédominant de sursaturation.
A well-designed batch crystallization process is one that can be scaled successfully to production scale - giving the desired crystal size distribution, yield, form and purity. Batch crystallization optimization requires maintaining adequate control of the crystallizer temperature (or solvent composition).