test

ParticleTrack G400

For Laboratory Environments

Probe-based instrument that is inserted directly into laboratory reactors to track changing particle size and count in real time at full process concentrations. Particles, particle structures and droplets are monitored continuously, as experimenta...

Полное описание
test

ParticleTrack G600/G600 Ex

For Pilot Plants and Production

A flexible mounting system allows probes to be installed in reactors or pipelines using standard flanges, dip pipes and ball valves across a wide range of temperatures and pressures. Optional purged enclosures rated to ATEX and Class I, Div 1 stan...

Полное описание

What is the difference between the ParticleTrack G400 and G600 models?

In short, the G400 and G600 models were designed with different process environments in mind. The ParticleTrack G400 is best suited for laboratory applications while the G600 model is best for pilot plant and plant operations. 

Unsure of which model is best for your application? Contact us today!

What is FBRM? How does it work?

what is FBRM

what is FBRM

FBRM™ (Focused Beam Reflectance Measurement) is a measurement technique used for in-process particle measurement. The precise and sensitive chord length distributions (CLD) are highly responsive to changes in size, shape, or count. 

The probe is placed at an angle straight into process streams to allow particles to flow freely across the probe window where the measurement takes place. Through a system of optics, a laser beam is sent down the probe tube and narrowly focused on the sapphire window. The optics rotate at a constant rate (usually 2 m/s), which causes the beam spot to sweep through particles quickly as they pass by the window.

Individual particles or particle structures will backscatter the laser light to the detector when the concentrated beam travels through the particle system. These separate backscattered light pulses are identified, counted, and the distance across each particle is determined by multiplying the duration of each pulse by the scan speed.

The chord length, a crucial indicator of the particle's relationship to particle size, is used to determine this distance. Thousands of particles are typically counted and measured per second, enabling the real-time reporting of an accurate and very sensitive chord length distribution.

The chord length distribution charts the evolution of particle size and counts from the start to the finish of a procedure. It is possible to chart the evolution of statistics from each chord length distribution, such as counts in the fine and coarse size classes.

Разработка процессов кристаллизации

Разработка процессов кристаллизации

Новые технологии для разработки процессов кристаллизации

Процессно-аналитическая технология для эмульсий

Процессно-аналитическая технология для эмульсий

Процессно-аналитическая технология для эмульсий

Контроль распределения кристаллов по размерам

Контроль распределения кристаллов по размерам

Передовые методы оптимизации распределения кристаллов по размерам при разработке технологии и в процессе производства.

Кристаллизация в химическом производстве

Кристаллизация в химическом производстве

Простые инструменты процессно-аналитической технологии (PAT)